Import Excel unicode data with SQL Server Integration Services
Problem 1

One problem though that | have faced with importing data from Excel into a SQL Server table is the
issue of having to convert data types from Unicode to non-Unicode. SSIS treats data in an Excel file
as Unicode, but my database tables are defined as non-Unicode, because | don't have the need to
store other code sets and therefore | don't want to waste additional storage space. Is there any
simple way to do this in SSIS?

Solution 1

If you have used SSIS to import Excel data into SQL Server you may have run into the issue of having
to convert data from Unicode to non-Unicode. By default Excel data is treated as Unicode and also
by default when you create new tables SQL Server will make your character type columns Unicode as
well (nchar, nvarchar,etc...) If you don't have the need to store Unicode data, you probably always
use non-Unicode datatypes such as char and varchar when creating your tables, so what is the
easiest way to import my Excel data into non-Unicode columns?

Using SSIS to import excel data into “Unicode” table in SQL Server is straightforward and error free.

Using SSIS to import excel data into “non Unicode” (varchar) table in SQL Server has data conversion
errors. l.e.

Columns "firstname" and "firstname" cannot convert between unicode and non-unicode data types...

&

L

—

. Excel Source

‘ j OLE DB
L Destination

[Columns "firstname" and "firstMame" cannot convert between unicode and non-unicode string data types... I

[*

If we execute the task we get the following error dialog box which gives us additional information.

Package Validation Error

@ Package Yalidation Error
Additional information:
i.» Error at Data Flow Task [OLE DB Destination [S2]]: Columns "firstname" and “firstName" cannot

convert between unicode and non-unicode string data types.

Error at Data Flow Task [OLE DB Destination [52]]: Columns "lastname" and “lastMame" cannot
convert between unicode and non-unicode string data types.

Error at Data Flow Task [DTS.Pipeline]: "component "OLE DB Destination” (52)" failed validation and
returned validation status "vS_ISBROKEN".

Etror at Data Flow Task [DTS.Pipeline]: One or more component failed validation.
Error at Data Flow Task: There were errors during task validation,

{Microsoft.DataTransformationServices. VsIntegration)

»

e

Page 1 of 37

Solving the Problem
So based on the error we need to convert the data types so they are the same types.

If you right click on the OLE Destination and select "Show Advanced Editor" you have the option of
changing the Data Type from string [DT_STR] to Unicode string [DT_WSTR]. But once you click on OK
it looks like the changed was saved, but if you open the editor again the change is gone and back to
the original value. This makes sense since you cannot change the data type in the actual table.

Conneckion Managers | Component Properties | Column Mappings | Input and Cukput Properties

Specify properties For the inputs and outputs of the data Flow component.,

Inputs and outputs:

= -'E:I OLE DE Destination Inpuk E Common Properties
=3 External Calumns Descripkion
ey ffirsthlame
4=] lastName
£-L3 Input Columns Mare firsthame
+|-| =8 OLE DB Destination Error Oukpuk B Data Type Properties
CodePage 1252
DakaType skring [OT_STR]
Length 50

If you right click on the Excel Source and select "Show Advanced Editor" you have the option of
changing the Data Type from Unicode string [DT_WSTR] to string [DT_STR] and the change is saved.

Connection Managers | Component Properties | Column Mappings | Input and Qutput Properties

Specify properties for the inputs and outputs of the data flow component.

Inputs and outputs:

== Excel Source Output E Common Properties A
#-[_3 External Columns ComparisonFlags
=4 Output Columns Description
. = lastname ErrorRowDisposition RD_FailComponent
[+ =% Excel Source Error Qutput ExternalMetadataColu 27
Mame firstname
SortKeyPosition 0

TruncationRowDisposit RD_FailComponent
E Data Type Properties

CodePage 1252
DataType string [DT_STR]
Lenath S0 “

Page 2 of 37

If you click OK the change is saved, but now you get the error in the Excel Source that you cannot
convert between unicode and non-unicode as shown below. So this did not solve the problem

either.
B Excel 5
& Source

[Column "firstname" cannot convert between unicode and non-unicode string data types.

ja OLE DB
| Destination

Using the Data Conversion Task

So to get around this problem we have to also use a Data Conversion task. This will allow us to
convert data types so we can get the import completed. The following picture shows the "Data
Conversion" task in between the Excel Source and the OLE DB Destination.

TL
3 5 Excel Source

~y
[] ¢» Data Conversion

I

j OLE DE Destination .4\

If you right click on "Data Conversion" and select properties you will get a dialog box such as the
following. In here we created an Output Alias for each column.

Our firstname column becomes firstname_nu (this could be any name you want) and we are making
the output be a non-unicode string. In addition we do the same thing for the lastname column.

Page 3 of 37

= + Data Conversion Transformation Editor

Configure the properties used to convert the data type of an input column to a different ¢
type to which the column is converted, set the length, precision, scale, and code page of

Axailable Input Col...

lastname

Input Column Qutput Alias Data Type Length
firstname firstname_nu string [DT_STR] 255
lastname lastname_nu string [DT_STR] 255

If we save this and change the mapping as shown to use our new output columns and then execute

the task we can see that the import was successful.

Available Input ... Available De...

laztname

firsthanme_n

lazthame_nu

Input Calumn Destination Column
firstrarne_nu | Firsthlame
lastname_nu |astMame

Page 4 of 37

As you can see this is pretty simple to do once you know that you need to use the Data Conversion
task to convert the data types.

Next Steps

e Next time you are importing data into SQL Server, don't forget about using the Data
Conversion task if you are importing unicode data types into non-unicode columns

e If you encounter this error Columns "xx" and "xx" cannot convert between unicode and non-
unicode data types...remember this tip

Problem 2

Sometimes an SSIS Package fails even though when there were no changes in the structure/schema
of the Excel worksheet. | investigated it and | noticed that the SSIS Package succeeded for some set
of files, but for others it failed. | found that the structure/schema of the worksheet from both these
sets of Excel files were the same, the data was the only difference. How come just changing the data
can make an SSIS Package fail? What actually causes this failure? What can we do to fix it?

Solution 2

This example should demonstrate the actual failure and solution for this problem. As you can see in
the image below, | have 18 records in the Excel worksheet, when | ran my SSIS Package to load the
data from this worksheet, it worked fine.

3|Chromoly steel.

630| Wide-link design.
912|Self-sealing tube.

High-density rubber.
618|Super rigid spindle.
914|General purpose tube.
907|Higher density rubber.
619|High-strength crank arm.
Designed to absorb shock.
Clipless pedals - aluminum.
Rubber bumpers absorb bumps.
Superior shifting performance.

O 0 N OOV & WN =
O
o
0

-
(=]
o0
o]
L=

=
[
00
wn
o

[
N
[+
00
O

-
w
(o))
-
w

14 913|Conventional all-purpose tube.

15 1203 |Rugged weatherproof headlight.
16 888| Lightweight foam-padded saddle.
17 745 |Sealed cartridge keeps dirt out.

18 1202 |Rechargeable dual-beam headlight.

[
(=}
o«
w
w

A stable pedal for all-day riding.

N
(=]

In the next image, | made some changes to row number 7. The description for ProductDescriptionld
907 is much larger than the previous data load. When | ran my SSIS package again to load the data
from this worksheet, it worked fine as well.

Page 5 of 37

1 ;

2 3|Chromoly steel.
3 630|Wide-link design.
4 912|Self-sealing tube.
5

6

7

909|High-density rubber.

618|Super rigid spindle.

914|General purpose tube.

907| This bike is ridden by race winners. Developed with the Adventure Works
Cycles professional race team, it has a extremely light heat-treated
aluminum frame, and steering that allows precision control. Each frame
is hand-crafted in our Bothell facility to the optimum diameter and wall-
thickness required of a premium mountain frame. The heat-treated
welded aluminum frame has a larger diameter tube that absorbs the

8 bumps.

9 619|High-strength crank arm.

10 886|Designed to absorb shock.

11 850|Clipless pedals - aluminum.

12 889 |Rubber bumpers absorb bumps.
13 613 |Superior shifting performance.

14 913|Conventional all-purpose tube.
15 1203|Rugged weatherproof headlight.
16 888|Lightweight foam-padded saddle.
17 745|Sealed cartridge keeps dirt out.
18 1202 |Rechargeable dual-beam headlight.
19 853|A stable pedal for all-day riding.
n

In the next image, | reverted the previous change and made some changes to the row number 14.
The description for ProductDescriptionld 1203 is much larger than the previous data load. When |
ran my SSIS package again to load the data from this worksheet, it failed with the following
exception:

o
Q
o
(]
(o)}
(@]
=
w
~

O 00 N O U & W N -

Chromoly steel.

630

Wide-link design.

912

Self-sealing tube.

High-density rubber.

618

Super rigid spindle.

914

General purpose tube.

907

Higher density rubber.

619

High-strength crank arm.

10 886 | Designed to absorb shock.

11 850|Clipless pedals - aluminum.

12 889|Rubber bumpers absorb bumps.

13 613|Superior shifting performance.

14 913|Conventional all-purpose tube.

1203[This bike is ridden by race winners. Developed with the Adventure Works

Cycles professional race team, it has a extremely light heat-treated
aluminum frame, and steering that allows precision control. Each frame
is hand-crafted in our Bothell facility to the optimum diameter and wall-
thickness required of a premium mountain frame. The heat-treated
welded aluminum frame has a larger diameter tube that absorbs the

15 bumps.

16 888/ Lightweight foam-padded saddle.

17 745|Sealed cartridge keeps dirt out.

18 1202 |Rechargeable dual-beam headlight.

19 853 |A stable pedal for all-day riding.

0

What caused the above SSIS package to fail?

SSIS Excel Connection Manager determines the data type of each column of the worksheet on the
basis of the data of that particular column from the first 8 rows. This is the default behaviour and the
SSIS connection manager uses a value in the registry to determine the number of rows for the data
type determination.

In your SSIS Package, right click on the Excel source in the data flow task and click on "Advance
Editor for Excel Source". Next change the data type and length of the column from its default value.
For example, in my case | have a "Description" column which has text data and the length is up to
500 characters. | have put max length for this column as 1000. Now click on "OK" button.

Page 7 of 37

The advanced editor provides access to the low-level properties of data flow components. Additionally, the advanced editor can
be used to configure components that do not have a custom user interface,

| Connection Manaaers | Comoonent Proverties | Column Maopinas| Input and Output Properties |
Specify properties for the inputs and outputs of the data flow component.

Inputs and outputs:
= Excel Source Output B Common Properties
= 23 External Columns [r
41 ProductDescriptionlD Description
_¥1) Description iD 17
- ngp‘r)::lﬁglg:‘sf:iptionlo IdentificationString external column “Description” (L
® Description MappedColumnlD 0
1 Excel Source Error Qutput Naiog Description
© Data Type Properties i
CodePage 0
DataType Unicode string [DT_WSTR)
1000
Precision 0
Scale 0
Length
{ Remove Column J
1 r
\ Refresh ‘ l OK] Cancel { Help

[The output column *Description” (19) on the error output has properties that do not match the proper..|

When you double click on the Excel Source task, it will inform that the component is not in a valid
state and asks for your confirmation to fix this issue. When you click on the "Yes" button it will reset
the data type and length of the column to what it was earlier, before we made the changes as
above.

Page 8 of 37

The component is not in a valid state. The validation errors are:
Error at Data Flow Task [Excel Source [1]]: The output column “Description™ (19) on the error output
has properties that do not match the properties of its corresponding data source column,

Do you want the component to fix these errors automatically?

Now to summarize the whole thing: SSIS Excel Connection manager determines the data type and
length of columns from the worksheet on the basis of the first eight rows of data. Even though we
can change the data type and length from the Advance Editor for Excel Source, it will not be valid

and the information will be reset by SSIS Excel Connection manager automatically using the same
determination process.

Fixing the problem now in the registry

So as | said before, the number of rows to consider when determining the data type and length is
determined by a registry key called TypeGuessRows by the SSIS Excel Connection Manager. By
default its value is 8 and hence 8 rows are considered when determining the data type and length.

Now coming back to the solution, these are some of the options to address this problem:

e Configure the source system to provide your Excel file in which data is sorted on the basis of
the length of the data in each column so that largest value of each column appears in the
first row and alphanumeric data appears before numeric data.

e Configure the source system to provide a dummy record in your Excel file as first row with
desired data type and size; then after data import you can remove/delete that dummy
record from the database.

e Configure the source system to provide you a csv file instead of Excel file because with a csv
file you have more control to determine data type and length of a column.

e Changing the TypeGuessRows registry key to 0 from its default value of 8. This will make the
Excel connection manager consider all the rows when determining data type and length of
each column.

Unfortunately, the first three options do not apply in my scenario as | do not have control on the
source system providing data in worksheet. With this being said, | made the change in the
TypeGuessRows registry key and updated its value from 8 to 0. After making this change, my same
package worked like a charm for the same Excel worksheets for which it failed last time.

Registry Key Location - [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel]

Please Note : On a 64-Bit Windows Server machine the registry key will be available here:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Jet\4.0\Engines\Excel

Page 9 of 37

A Registry Editor
file Edit View Favontes Help

IsoBum * || Name Type Data
~ Jet b (Default) REG_SZ (value not set)
N 40 ¢ AppendBlankRows REG_DWORD Ox00000001 (1)
- Engines ab ' DisabledExtensions REG_SZ Ixls
Excel % FirstRowHasNames REG_BINARY 01
Exchange
Jot 2x 5 ImportMixedTypes REG_SZ Text
R TRl REG_DWORD 0x00000000 (0)
Jer 40 *6'Win32 REG_SZ CAWindows\SysWOW6G4\msexcl40.dll
Lotus
ODBC

Please be cautious when changing the value for TypeGuessRows registry key and keep these points
in mind:

e TypeGuessRows registry key is global setting and its not only going to impact your SSIS
Package, but it will impact every place where it is referenced.

e Changing the value for TypeGuessRows registry key to 0 from its default value of 8, makes
the Excel connection manager consider all the rows when determining the data type and
length of each column and hence it could have a severe impact on the performance of your
SSIS package if the number of rows in your Excel worksheet is large.

Now, as we saw, to fix this issue the easiest solution is to make change in the registry, but in many
scenarios you will not have control in making this change as the servers are managed by the
Operations Team or there might be several other applications running on the same machine. Even if
you have control in changing this setting, this change might cause your SSIS Package to perform
poorly, based on the amount of data you have in your Excel worksheet, and it may impact other
systems as well when this registry key is being referenced. So now the question is, is there any way
we can avoid making changes in the registry, but still solve the problem?

Solution

The basic idea of this solution is to convert the Excel worksheet to CSV file and use the Flat File
Connection Manager/Source adapter to import data from the CSV file. With the Flat File Connection
Manager/Source Adapter we have more control to define the data type and length of each column.

These are questions that come to mind when thinking about converting an Excel worksheet to a CSV
file:

e When saving an Excel worksheet using a csv extension does this make it a CSV file?

e ACSV file uses a comma as column separator, but what if there are commas in the data
itself?

e What s the impact of converting an Excel worksheet to CSV file?

Well, simply saving the Excel worksheet using a CSV extension will not make it CSV file as the storage
format is different for both of these file types. Rather we can use the Excel Object Library to save the
Excel worksheet as a CSV file using the Script Task in SSIS and then we can import the data directly
from the CSV file as shown below.

Page 10 of 37

L}_L Truncate
Table

¢§ (éosvert Excel To

—

A 4

u Load Data from CSV Fie

In the Script Task, when writing code for conversion, first of all you need to add a reference to

Microsoft.Office.Interop.Excel under .NET components as shown below:

(Assuming Visual Studio 2010) In the solution explorer you can right click on the references tree and
choose "add reference." Choose the .NET tab and look for "Microsoft.Office.[...]" Components. Add

the ones you need.

| NET |cOM | Projects | Browse | Recent

' Component Name

Microsoft.Office.interop.access.dao

Runtime
v2.0.50727

d:\Program Files (x86)\...

| Microsoft.Office.Interop.Excel

v1.14322

d:\Program Files (x86)\... |

Microsoft.Office.Interop.Excel
Microsoft.Office.Interop.Graph
Microsoft.Office.Interop.Graph
Microsoft.Office.Interop.InfoPath
Microsoft.Office.Interop.InfoPath
Microsoft.Office.Interop.InfoPath.SemiTrust
Microsoft.Office.Interop InfoPath.SemiTrust
Microsoft.Office.Interop.InfoPath.Xml
Microsoft.Office.Interop.InfoPath.Xml
Microsoft.Office.Interop.MSProject
Microsoft.Office.Interop.MSProject
Microsoft.Office.Interop.OneNote
Microsoft.Office.interop.OneNote

| Microsoft.Office.Interop.Outlook

L‘,.‘; renente NEGen Intacnn Dutlank

After adding the required reference, the References node in the Solution Explorer will look like this:

Page 11 of 37

v2.0.50727
v1.1.4322
v2.0.50727
v1.14322
v2.0.50727
v1.14322
v2.0.50727
v114322
v2.0.50727
v1.14322
v2.0.50727
v114322
v2.0.50727
v1.14322

d:\Program Files (x86)\..
d:\Program Files (x86)\...
d:\Program Files (x86)\..
d:\Program Files (x86)\..
d:\Program Files (x86)\..
d:\Program Files (x86)\..
d:\Program Files (x86)\...
d:\Program Files (x86)\...
dAProgram Files (x86)\...
d:\Program Files (x86)\...
d:\Program Files (x86)\...
d:\Program Files (x86)\...
d:\Program Files (x86)\..
d\Program Files (x86)\...

2INENTINT AL Denmenan Kilns (WQEN

oK || Cancel

"Project Explorer ~ 4 x]
7 st_6dc747ff29cf41c6acllb7cObca33d,
+ 4 Properties
=} ¥ References
QRS Vicrosoft Office Interop Excel

-3 Microsoft.SqlServer.ManagedDTS
-3 Microsoft.SqlServer.ScriptTask
-Q System
-3 System.AddIn
-3 System.Data
-2 System.Windows.Forms
-3 System.Xml
= SSIS_ScriptTask
<) ScriptMain.cs

Once you have added the required reference, you can add these lines of code. The complete list of

code for converting Excel worksheet to CSV file is provided below. You need to provide the location
and name of the Excel worksheet along with the name of the worksheet itself and then the location
and name for the CSV file which will be created:

Page 12 of 37

/*

Microsoft SQL Server Integration Services Script Task

Write scripts using Microsoft Visual C# 2008.

The ScriptMain is the entry point class of the script.
*/
using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime;
using System.Windows.Forms;
using Excel = Microsoft.Office.Interop.Excel;
using Microsoft.Office.Interop.Excel;
namespace ST_6dc747ff29cf41c6acllb7cObca33d19.csproj
{

[System.AddIn.AddIn("ScriptMain"”, Version = "1.0", Publisher = "", Description

= "]

public partial class ScriptMain :
Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase

{

#region VSTA generated code
enum ScriptResults

{
Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success,
Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure
s
#endregion
/*

The execution engine calls this method when the task executes.

To access the object model, use the Dts property. Connections, variables,
events,

and logging features are available as members of the Dts property as shown 1in
the following examples.

To reference a variable, call
Dts.Variables["MyCaseSensitiveVariableName"].Value;

To post a log entry, call Dts.Log("This is my Log text", 999, null);

To fire an event, call Dts.Events.FireInformation(99, "test", "hit the help
message"”, "", @, true);

To use the connections collection use something Like the following:

ConnectionManager cm = Dts.Connections.Add("OLEDB");

cm.ConnectionString = "Data Source=Localhost;Initial
Catalog=AdventureWorks;Provider=SQLNCLI10;Integrated Security=SSPI;Auto
Translate=False;";

Before returning from this method, set the value of Dts.TaskResult to indicate
success or failure.

To open Help, press F1.
*/
private static Workbook mWorkBook;
private static Sheets mWorkSheets;
private static Worksheet mWSheet1l;
private static Excel.Application oXL;
private static string ErrorMessage = string.Empty;
public void Main()
{
try
{

Page 13 of 37

string sourceExcelPathAndName = @"D:\Excel Import\Excel
Import.xls";

string targetCSVPathAndName = @"D:\Excel Import\Excel Import.csv";

string excelSheetName = @"Sheetl";

string columnDelimeter = @"|#|";

int headerRowsToSkip = 0;

if (ConvertExcelToCSV(sourceExcelPathAndName,
targetCSVPathAndName, excelSheetName, columnDelimeter, headerRowsToSkip) == true)

{
Dts.TaskResult = (int)ScriptResults.Success;
}
else
{
Dts.TaskResult = (int)ScriptResults.Failure;
}
}
catch (Exception ex)
{
Dts.TaskResult = (int)ScriptResults.Failure;
}

}

public static bool ConvertExcelToCSV(string sourceExcelPathAndName, string
targetCSVPathAndName, string excelSheetName, string columnDelimeter, int

headerRowsToSkip)
{
try
{

oXL = new Excel.Application();

oXL.Visible = false;

oXL.DisplayAlerts = false;

Excel.Workbooks workbooks = oXL.Workbooks;

mWorkBook = workbooks.Open(sourceExcelPathAndName, @, false, 5,
"t,o"", false, X1lPlatform.xlWindows, "", true, false, @, true, false, false);

//Get all the sheets in the workbook

mWorkSheets = mWorkBook.Worksheets;

//Get the specified sheet

mWSheetl = (Worksheet)mWorkSheets.get Item(excelSheetName);

Excel.Range range = mWSheetl.UsedRange;

//deleting the specified number of rows from the top

Excel.Range rngCurrentRow;

for (int i = @; i < headerRowsToSkip; i++)

{

rngCurrentRow = range.get_Range("Al", Type.Missing).EntireRow;
rngCurrentRow.Delete(X1DeleteShiftDirection.x1ShiftUp);

}

//replacing ENTER with a space

range.Replace("\n", " ", Type.Missing, Type.Missing, Type.Missing,
Type.Missing, Type.Missing, Type.Missing);

//replacing COMMA with the column delimeter

range.Replace(",", columnDelimeter, Type.Missing, Type.Missing,
Type.Missing, Type.Missing, Type.Missing, Type.Missing);

mWorkBook . SaveAs (targetCSVPathAndName, X1FileFormat.x1CSVMSDOS,

Type.Missing, Type.Missing, Type.Missing, Type.Missing,
Microsoft.Office.Interop.Excel.X1SaveAsAccessMode.x1Exclusive,

Type.Missing, Type.Missing, Type.Missing,

Page 14 of 37

Type.Missing, false);
return true;

}

catch (Exception ex)

{
ErrorMessage = ex.ToString();
return false;

}

finally

{

if (mWSheetl != null) mWSheetl = null;

if (mWorkBook != null) mWorkBook.Close(Type.Missing, Type.Missing,
Type.Missing);

if (mWorkBook != null) mWorkBook = null;

if (oXL != null) oXL.Quit();

System.Runtime.InteropServices.Marshal.ReleaseComObject(oXL);

if (oXL != null) oXL = null;

GC.WaitForPendingFinalizers();

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();

Page 15 of 37

Below you can see the Excel worksheet which | am using as the source file for conversion. You will
notice row number 15 has a long string and also the description of this row contains commas in it as
well.

A A B
1
2 3|Chromoly steel.
3 630|Wide-link design.
4 912|Self-sealing tube.
o 909/ High-density rubber.
6 618|Super rigid spindle.
7 914|General purpose tube.
8 907 | Higher density rubber.
9 619|High-strength crank arm.
10 886/ Designed to absorb shock.
11 850|Clipless pedals - aluminum,
12 | 889|Rubber bumpers absorb bumps.
13| 613|Superior shifting performance.
14 913|Conventional all-purpose tube.
1203 This bike is ridden by race winners. Developed with the Adventure Works
Cycles professional race team, it has a extremely light heat-treated
aluminum frame, and steering that allows precision control. Each frame
is hand-crafted in our Bothell facility to the optimum diameter and wall-
thickness required of a premium mountain frame. The heat-treated
welded aluminum frame has a larger diameter tube that absorbs the
15 bumps.
16 | 888| Lightweight foam-padded saddle.
17 | 745|Sealed cartridge keeps dirt out.
18 1202|Rechargeable dual-beam headlight.
19 | 853|A stable pedal for all-day riding.

After the conversion, the CSV file will look like this. You will notice where there were commas we
now have some special characters " | #|":

Page 16 of 37

File Edit Format View Help
ProductDescriptionID,Description R
3,Chromoly steel.
630,wide-1link design.
912,Self-sealing tube.
909,High-density rubber.
618,Super rigid spindle.

914 ,General purpose tube.

907 ,Higher density rubber.

619,High-strength crank arm.

886,Desi?ned to absorb shock.

850,Clipless pedals - aluminum.

889 ,Rubber bumrers absorb bumps.

613,Superior shifting performance.

913,Conventional all-purpose tube.

1203,This bike is ridden by race winners. Developed with the
Adventure wWorks Cycles professional race team|#| it has a extremely
light heat-treated aluminum frame|#| and steering that allows
precision control. Each frame is hand-crafted in our Bothell
facility to the optimum diameter and wall-thickness required of a
premium mountain frame. The heat-treated welded aluminum frame has
a larger diameter tube that absorbs the bumps.

888,L1ghtweight foam-padded saddle.

745 ,Sealed cartridge keeps dirt out.

1202,Rechargeable dual-beam headlight.

853,A stable pedal for all-day riding.

The idea behind this is, before conversion replace all the commas with some special characters and
after importing the data from the CSV file update the special characters back to a comma. This can
be done using code such as this.

SELECT * FROM [dbo].[ProductInformation]

UPDATE [dbo].[ProductInformation]

SET [Description] = REPLACE ([Descriptionl]l, 'I#[|', ', ")
SELECT * FROM [dbo].[ProductInformation]

In order to use this approach, we need to have extra storage space for having both a CSV file along
with an Excel file. Apart from that, the Excel object library will take a few seconds to save the file as a
CSV file. I haven't tried it on very large file, though | think this should not take much longer. Once
you have the data loaded you can do anything else you need to at that point.

Use SSIS to import one cell of an Excel file into SQL Server
Problem

Recently | needed to find a method to import one cell of an Excel sheet into SQL Server 2005 using a
scheduled job on a 64 bit clustered environment. For example, | have a monthly sales report listing
sales per product category, such as Books, Magazines, DVDs, etc. | only want to import the Total
Sales amount into SQL Server and this number is located in an Excel file "sales.xls.sheet1.cell.B5". |
used to use OPENROWSET to solve the problem, however OPENROWSET requires Microsoft Jet OLE
DB Provider which is not available in 64 bit. In this tip | am going to talk about how to use SSIS to
accomplish this task easily.

Solution

Page 17 of 37

The following steps show how to import one cell of an Excel sheet into SQL Server.

For example, this is what my Excel file looks like, the data | need to import is Total Sales (2300) in cell
B5.

A B
1 Product Sales($)
2 Books 800
3 Magazines 500
4 |DVDs 1000
5 Total I 2300'

For simplicity, this is the structure of the table | am loading the data into.

CREATE TABLE [dbo].[Sales](
[Product] [varchar](50) NULL,
[Sales] [numeric](18, 2) NULL

) ON [PRIMARY]

SSIS Package

1. Using SSIS, create a Data Flow Task as shown below. When adding the Data Flow Destinations,
make sure to select "SQL Server Destination", not "OLE DB Destination". The difference between
these two is: SQL Server Destination gives you ability to define which row or rows (row 5 in this case)
you want to import, while an OLEDB Destination doesn't provide this option.

L _Jn|-',, Excel Source

_

* ¥ Data
~ Conversion

i

0, SQL Server
Destination

2. In the Excel Source Editor, select column "Sales(S$)" as shown below. In my example, | have 5 rows
of data and when | selected my Excel file | specified that the first row does not have column names.
In addition | gave column names instead of using the defaults F1, F2, etc... Otherwise if | said my
Excel data had column names | would import data row 4.

Page 18 of 37

Available External Columns

Sales($)

External Column Output Column
Sales($) Sales($)

3. In the Data Conversion Transformation Editor, select Output Data Type as
"numeric[DT_NUMERIC]". When setting this up | used a precision of 18 and scale of 2 to allow for
decimal values.

Available Input C...

Sales($)

Input Column Output Alias Data Type

Sales($) Copy of Sales{$) numeric [DT_MUMER...

4. In SQL Destination Editor, map the converted number -- "Copy of Sales(S$)" in this example to the
Destination Column.

Available Input Columns Il Available Destination...

Copy of Sales($)

Input Column Destination Column
<ignore> Product
Copy of Sales($) Sales

Page 19 of 37

5. Again in SQL Destination Editor, select Advanced, put 5 as both the "First row" and "Last row" as
shown below. Row 5 contains the total sales value that we want to import. You can specify the
other options shown below as needed.

Specify the options for a bulk insert.

Keep identity Table lock Fire triggers
Keep nulls Check constraints

First row: 5

Last row: 5

Maximum number of errors:

Timeout: {30

Order columns:

That's all there is to it. In this example | am always going to pull in the value in cell B5, so if you have
a static Excel sheet this is a nice simple approach to pull in just one value.

Next Steps

Please notice that in order to use a SQL Server Destination, the SSIS package has to be run
on local server, in this case it will be the data import destination server. The package file can
be located remotely though. Therefore you need set up the schedule job on the destination
server to run this package, not on a remote server.

Since there is no 64 bit driver for Excel, when setting up a scheduled job on a 64 bit server,
you have to create a CmdExec step to manually call the 32 bit DTExec.exe to execute the
package, such as: C:\SQL 2005 Tools (x86)\90\DTS\Binn\DTExec.exe /FILE "D:\Package.dtsx"
/MAXCONCURRENT " -1" /CHECKPOINTING OFF /REPORTING E

File DTExec.exe is installed with the SQL Server client component, not the SSIS component.
So in a clustered environment, make sure the SQL Server 2005 client is installed on all nodes
and DTExec.exe is located on same folder structure, such as C:\SQL 2005 Tools(x86) on all
nodes, otherwise the job may fail when a SQL instance fails over to a different node and the
file DTExec.exe is not available.

Page 20 of 37

Dynamically find where table data starts in Excel using SSIS
Problem

Recently | worked on a project to import Excel spreadsheets from various vendors into our database
and not all spreadsheets had the same row number for the header record. This is because most of
the vendors had additional information on the top of the header row. In this tip | am going to show
how the SSIS script task can be used to solve this issue.

Solution

In order to know where the header record starts we need to open the spreadsheet and search for
the headers cell by cell, in this tip | am going to show how we could accomplish this with SSIS script
task. Lets look at a sample spreadsheet, the structure is changed for simplicity purposes.

A B C D
1 Date 11/15/2010
2 Description Linel
3 Description Line2
4
5 HdrColl HdrCol2 HdrCol3 HdrCol4
6 1 S 100.00 1/1/2010 Some Text
7 2 5 150.00 2/5/2010 Some Text 2
8 3 § 175.00 2/22/2010 Some Text 3
2 4 S 200.00 3/1/2010 Some Text4
10 5 $ 210.00 4/10/2010 Some Text5
11 6 S 220.00 4/15/2010 Some Text 6

In the example the header row starts at row 5, to get this information during run time of the SSIS
package we used a script task before the data flow task. Below is how the SSIS package Control Flow
looks like.

e 4 Script Task

I

[,J ¥
I Data Flow Task

Page 21 of 37

Add a new string variable called "varTabName", and include this variable as a ReadWriteVariable for
the Script Task. Add the following code to Script Task

public void Main ()

{

string filePath = "C:\\MSSQLTips\\MSSQLTipl.xlsx";
string tabName = "Sheetl$";
String strCn = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source="

+ filePath + ";Extended Properties=\"Excel 12.0;HDR=NO; IMEX=1\";";
OleDbConnection cn = new OleDbConnection (strCn);

string strSQL = "Select * From [" + tabName + "Al:D100]";

int iCnt = 0;

OleDbDataAdapter objAdapter = new OleDbDataAdapter (strSQL, cn);
DataSet ds = new DataSet();

objAdapter.Fill (ds, "dSheetl");

DataTable dt = ds.Tables["dSheetl"];

foreach (DataRow row in dt.Rows)

{
iCnt = iCnt + 1;

if ((row[0Q0].ToString() == "HdrColl")
& (row[l].ToString() == "HdrCol2")

& (row[2].ToString() == "HdrCol3")

& (row[3].ToString() == "HdrCol4d"))
{

Dts.Variables["varTabName"] .Value = tabName + "A"
+ iCnt.ToString() + ":D1048576";
break;
}
}
cn.Close();
Dts.TaskResult = (int)ScriptResults.Success;
}

For simplicity reasons the file path and the tab name of the excel spreadsheet have been hardcoded.
We use an OLEDB Connection to connect and query the spreadsheet on a range of cells. Since our
sample spreadsheet has 4 columns of data and since we know that the header is always in the top
100 rows we can use the following query "select * from Sheet1SA1:D100" to pull this data into a
data set. We then loop through the rows of the data set until we find the Header row, then we
append the counter to the tab name and set the varTabName variable. For this example the value of
the varTabName variable would be Sheet1$A5:D1048576, where 1048576 is the maximum number
of rows for excel 2007.

In the Data flow task, choose Excel as the source and for Data access mode use "Table name or view
name variable" option and in the Variable Name drop down choose User::varTabName

Page 22 of 37

Configure the properties that enable the Data Flow task to obtain data from Excel provider,

Specify 2 connection manager, data source, or data source view for the Excel source, Then, sefect the mode used to

Connection Manager nec : ct
Columns access data within the source, After selecting the data access mode, select from among the additional data access
Error Output options that appear.
OLE DB connection manager:
I Excel Connection Manager :J s NG
Data gccess mode:
Tablename orview namevariable ..~
Vanable name:
User:varTabName -
iOSs] lnSedan) it

Below is the output from the data viewer grid for the data flow task.

Page 23 of 37

Excel Source Qutput Data Viewer 1 at Excel Source.Excel Source Output @
[E] [Detach l [Copy Data]
HdrCal1 HdrCal2 HdrCol3 HdrCol4
- 1 . 100 1/1/2010 Some Text
2 150 2{52010 Some Text 2
3 175 2222010 Some Text 3
4 200 312010 Some Text 4
iff 5 210 4102010 Some Text 5
G 220 4/15/2010 Some Text 6
Attached Total rows: 6, buffers: 1 Rows displayed = 6

We are now able to import the data from the spreadsheet by dynamically setting the data range in
the SSIS script task.

Next Steps
e Add exception handling for the script task.

e We can use for Each loop container to loop though multiple files, the file path needs to be a
variable which has to be passed to the Script Task.

e We can use GetOleDbSchemaTable to find all the tabs and loop through those.
Configure the Flat File Source in SQL Server Integration Services 2012 to read CSV files
Problem

| am new to SSIS and need to know how to read a comma-separated value (CSV) file into an SQL
Server Integration Services (SSIS) 2012 package? What are the steps that you need to follow? Check
out this tip to learn more.

Solution

For this solution, we will use the CSV file shown below. The file is named tip.csv and it has five
columns and a header row.

ID,Amount,Category,EntryDate,Description
1,123.45,A,2012-11-30,"Aluminum widget"
2,246.80,B,2012-12-31, "Copper widget”
3,368.12,A,2013-01-31,"Silver widget”
4,481.20,B8,2013-02-01,"Gold object”
5,510.15,B,2013-03-01, "Platinum widget"

The first step is to drag a Data Flow Task onto the package palette as shown below.

Page 24 of 37

SSIS Toolbox M Sl Package.dtsx [Design] X
- ISW Control Flow |(2i Data Flow |V Parameters | & EventHandlers ‘?_'3 Package Explore
%1 Data Flow Task
| %3 Execute SQL Task

4 Common
h?ﬁ Analysis Services Processin...
| Bulk Insert Task

Z] Data Profiling Task

22 Everiita Parkans Tack

|1 Data Flow
l_,"L_J Task

Double click on the Data Flow Task or click on the Data Flow tab.

Next, drag a Flat File Source from the SSIS Toolbox onto the Data Flow palette as shown below.

15 Toolbor L P2ckage dis Designr” < I

hChextransioms %, Control Flow |{%i Data Flow IV Parameters | # EventHandlers |‘T'¢Jj Package Explore

4 QOther Sources i S
(& ADO NET Source Data Flow Task: [2J Data Flow Task
'ETQ CDC Source
B8 Excel Source =]
=) Flat File Source —»
ODBC Source
| & OLE DB Source
@ Raw File Source
@3, XML Source

Flat File Source

If you see a white X in the red circle, hover over the object to show the help message. The message
below states that we need to set up a connection to the flat file.

=}
2

»u Control Flow ([Data Flow / Parameters 7 EventHandlers fa Package Explorer

a

Data Flow Task: [&) Data Flow Task

i ’I Flat File Source
= 3

| A connection manager has not been assigned to the Flat File Source.Connections[FlatFileConnection]. i

At this point there are two ways to initiate the setup of the flat file connection. The first way is to
right click in the Connection Manager window and select "New Flat File Connection..." as shown
below.

Page 25 of 37

é] » Flat File Source Q

u UL LIvIn viar Iﬂy:lb

J_._JE;_QQISD;A,:““

&

=3
Fe
X

Connection Managers

Right-click here to add a new connection manager to the SSIS package.

Work Offline

New OLE DB Connection...

New Flat File Connection...

New ADO.NET Connection...

New Analysis Services Connection...
New File Connection...

New Connection...

Cut

Copy
Paste

Delete

Rename

Properties

L

The second way is to double click on the Flat File Source to bring up the Flat File Source Editor and
then click on "New...".

Configure the properties used to connect to and obtain data from a text file.

Connection Manager

Flat file connection manager:
Columns

Error Qutput [

Preview.,..

[] Retain null values from the source as null values in the data flow

_A Create a new flat file connection manager by clicking New.

Either of the above ways will initiate the Flat File Connection Manager Editor.

Page 26 of 37

) FlatFile ConnectlonManagerEd of

Connection manager name: Flat File Connection Manager
Description:
L5 General Select a file and specify the file properties and the file format.
B Columns File name: -]
1 Preview | —
JCale English (United States) v | L_| Unicode
Code page: 1252 (ANSI - Latin) |
Delimited v
Text qualifier | <none>
Header | oskip: [0
lumr nes in the dé
JS A valid file name must be selected.

Ol Cancel ’ [Help

Complete the Flat File Connection Manager Editor:

For the "Connection manager name" on the "General" tab, | typically will use the actual file name or
the type of file if there are multiple files of the same layout.

Just remember that what is entered for the name will be displayed in the Connection Manager
window.

For the "File name", click on "Browse..." to navigate to the file or enter the file name manually.
When using the browse feature, there are predefined filters for *.txt and *.csv files.

Because the Description column in our CSV file uses double quotes to qualify text strings, we must
place a double quote in the "Text qualifier:" box.

For our file, the "Header row delimiter:" is the default of {CR}{LF} (carriage return/line feed).

"Header rows to skip:" also remains at the default of 0 because we only have one header row in this
example and we make sure that "Column names in the first data row" is checked.

Page 27 of 37

Description:

r!,'f General

Connection manager name: tip.csv

Select a file and specify the file properties and the file format.

ig::’a:‘::d File name: H:\tip.csv '
1 Preview
Locale: | English (United States) v| [T Unicode
Code page: (1252 (ANSI - Latin) v
Format: | Delimited v
Text qualifier: " i
Header row delimiter: -
Header rows to skip: 0 1{«
Celumn names in thé first data row N
OK Cancel J [Help

Now, we click on "Columns" tab to review the Columns page. We leave the "Row delimiter" set to

the default of {CRHLF} (carriage return/line feed). We leave the "Column delimiter" set to the default
of Comma {,}. The preview section on this page allows us to see that SSIS is reading the file properly
according to the format. This preview page will also allow us to make changes as necessary to

accommodate the file's format.

Page 28 of 37

] FlatFile

Connection manager name: tip.csv
|
Description:
ﬂalf General Specify the characters that delimit the source file:
=] Columns o
B Advanced Row delimiter: CRHLF} o
= Preview
Column delimiter: Commal{,} ad

Preview rows 2-6:
‘,

D Amount Category EntryDate Description
| 1 123.45 A 2012-11-30 Aluminum widget
| 2 246.80 B 2012-12-31 Copper widget
3 368.12 A 2013-01-31 Silver widget
| 4 481.20 B 2013-02-01 Gold object
| 5 510.15 B 2013-03-01 Platinum widget

oK Cancel ’ [Help

Next, we click on "Advanced" tab to review the Advanced page. By default, SSIS sets the "DataType"
for each column to string [DT_STR], "OutputColumnWidth" to 50, and "TextQualified" to True.
Setting each column to the proper data type as it is read in from its source eliminates the need to
convert the data type downstream.

LY General Configure the properties of each column.
Columns
Advanced

=1 Preview [——————————WE| 4 Misc

Amount Name ID
E::;g[;)a?e ColumnDelimiter Comma {,}
Description ColumnType Delimited
InputColumnWidth 0
DataPrecision 0
DataScale 0
T =g 0T ST [
OutputColumnWidth 50
TextQualified True

We change the data type of the ID column to a four-byte signed integer [DT_I4] and "TextQualified"
to False.

Page 29 of 37

[

Amount
Category
EntryDate
Description

We change the data type of the Amount column to currency [DT_CY] and "TextQualified" to False.

Misc

Name
ColumnDelimiter
ColumnType
InputColumn\Width
DataPrecision
DataScale

DataType four-byte signed integer [DT_14] [v |

ID
Comma {,}
Delimited
0

0

0

OutputColumnWidth 0

TextQualified

False

1D
Category
EntryDate
Description

Misc

Name
ColumnDelimiter
ColumnType
InputColumnWidth
DataPrecision
DataScale
DataType

Amount
Comma {,}
Delimited
0

0

0

currency [DT_CY]

OutputColumnWidth 0

TextQualified

False

We change the length of the Category column to 1 and "TextQualified" to False.

ID

Amount
Catego
EntryDate
Description

4

Misc

Name
ColumnDelimiter
ColumnType
InputColumnWidth
DataPrecision
DataScale
DataType

Category
Comma {,}

Delimited

0

0

0

string [DT_STR]

QutputColumnWidth 1

TextQualified

False

We change the data type of the EntryDate column to database date [DT_DBDATE] and

"TextQualified" to False.

Page 30 of 37

D
Amount

Description

We leave the attributes of the Description column unchanged because we want the DataType to be

C ateio§

Misc

Name
ColumnDelimiter
ColumnType
InputColumnWidth
DataPrecision
DataScale

DataType
CutputColumnWidth
TextQualified

EntryDate

Comma {}

Delimited

0

0

0

database date [DT_DBDATE]
0

False

string [DT_STR], the OutputColumnWidth to be 50, and TextQualified to be True.

ID
Amount
Category

Click on the "Preview" tab to review another preview page. This preview page differs from the one
shown previously because the user has the capability to skip a specified number of rows to look into

EntaDate

4

Misc

Name
ColumnDelimiter
ColumnType
InputColumnWidth
DataPrecision
DataScale

DataType
OutputCelumnWidth
TextQualified

their file the way the SSIS Flat File Source views it.

Click on OK when you are done.

Page 31 of 37

Description
{CRKLF}
Delimited

0

0

0

string [DT_STR]
50

True

L%hﬂat File Connecti

Connection manager name: tip.csv
Description:
44 General The preview shows the source file divided into the specified columns. Initial data rows that are
E Columns skipped when the file is parsed during runtime, are not shown.
B Advanced
1 Preview
Data rows to skip: 0 ﬂ

Preview rows 2-6:

D Amount Category EntryDate Description

1 123.45 A 2012-11-30 Aluminum widget

2 246.80 B 2012-12-31 Copper widget

3 368.12 A 2013-01-31 Silver widget

4 481.20 B 2013-02-01 Gold object

5 510.15 B 2013-03-01 Platinum widget

Refresh
0K Cancel Help

On the "Connection Manager" page of the Flat File Source Editor, make sure the newly created Flat
File connection is selected.

Page 32 of 37

-
~, Flat File Source Editor ‘ -

Configure the properties used to connect to and obtain data from a text file.

Connection Manager : x
Flat file connection manager:
Columns
Error Output [tlp.csv '] ‘ New...
Retain null values from the source as null values in the data flow
< | mn »

—r— [Ganerl] [Help

On the "Columns" page of the Flat File Source Editor, the columns to be output from the Flat File
Source are displayed.

., Flat File Source Editor - Bl
_ s—

Configure the properties used to connect to and cbtain data from a text file.

Connection Manager

Available External Columns
Columns ;

Error Output

Amount
Category
EntryDate
Description

SISEENS

[External Column Output Column

i 1D

Amount Amount

Category Category
EntryDate EntryDate

Description Description

| oK H Ganeal H Help

Page 33 of 37

On the "Error Output" page of the Flat File Source Editor, we will leave the default values to have

SSIS fail the Flat File Source component on truncation or an error. Click the OK button when you are
finished.

f . Flat File Source Editor - - @

Configure the properties used to connect to and obtain data from a text file.

Connection Manager Input or Output Column Error Truncation Description

Columns = FlatFile Source Output

D Fail component Fail component Conversion
Amount Fail component Fail component Conversion
Category Fail component Fail component Conversion

EntryDate Fail component Fail component Conversion

gl gl gl Wl

Description Fail component Fail component Conversion

< | 1 |

Set this value to selected cells: [Fail component v] Ar

< 1] »

When setup correctly, the SSIS window Data Flow window should appear as shown below.

i Package.dtsx [Design]* X _
s, Control Flow IG‘:] Data Flow |y Parameters |

Data Flow Task: [Data Flow Task

,:ii] Flat File Source

=

r

Connection Managers |

=/ tip.csv

Next Steps

e After creating the Flat File Source, try connecting it to a Flat File or OLE DB Destination.

Page 34 of 37

Problem
When | save a Webi report with data as a CSV file, all of the leading zeros are cut off any numbers
when | open the file in Excel. How can | keep the zeros?

This is actually an Excel issue. The program automatically truncates all leading zeros from numbers in
CSV files. The key is to change at least the columns where the leading zeros occur (i.e. ORG or Fund
numbers) to "text." There are several options to do this. Start with the report open:

Option A (preferred option, most user control)
1. Click on Save to my computer as
2. Select either CSV or CSV (with options)
3. Click Save -- DO NOT OPEN THE CSV FILE DIRECTLY WITH EXCEL!
4. Open a new worksheet in Excel (see below for Excel screenshots.)
5. Open the Data tab
6. Click on the From text button in the Get External Data section
7. Select your CSV file to import
8. Select the "Delimited" radio button -- Text Import Wizard, Step 1 determines that your data
is delimited
Click Next
10. Check "Comma" as a delimiter (column dividers will appear in preview)-- Step 2 lets you set
delimiters
11. Click Next
12. Highlight the column(s) with leading zeros in Step 3
13. Mark those columns format as "text" by clicking the radio button in the Column Data
Format section. NOTE: You will need to do this for each column where the data contains
leading zeros.
14. Click Finish
15. The leading zeros will still be there in the new worksheet with the imported data. The
columns with real numbers will still be able to be used with calculations.

©

Option B
1. Click on Save to my computer as
2. Select either CSV or CSV (with options)
3. Click Save -- DO NOT OPEN THE CSV FILE DIRECTLY WITH EXCEL!
4. Change the file extension from *.csv to *.txt.
5. Follow the process #4 through #14 described above.

Actually, there are two things that need to be checked here. First, is Excel putting the leading zeros
in the CSV file it initially creates? Second, is it maintaining the zeros in the CSV file when you reload it
and then resave it? These are two separate issues.

You can check the first issue easily enough. All you need to do is rename the CSV file so it has a TXT
extension, then you can load it into a text editor, such as Notepad. There you can examine the actual
CSV file, as created by Excel, to make sure that everything is in the format you expect. If it is not—for
instance, there are no leading zeros where you need them—then you need to be concerned with
how Excel is creating the CSV file in the first place.

Page 35 of 37

You need to check whether there are leading zeros in the original Excel information. If there are, and
they are displayed, then you need to make sure that the column in which the data is contained is
formatted as Text in the Number tab of the Format Cells dialog box. If they are not, then you need to
format the cells using a Custom number format that displays the zeros. In both of these cases, the
leading zeros will be included in the CSV file created by Excel.

This brings us to the second issue. When you load a CSV file into Excel, it tries to determine the
format of the data being loaded. You probably noticed when you loaded your CSV file in Notepad
that even though Excel includes leading zeros in the output file, there are no quotes around the field
itself. This means that Excel automatically recognizes the field as a number when importing it. By
default, then, the number is displayed using one of the number fields, thereby expunging any
leading zeros in what Excel displays.

The way around this problem should be fairly obvious based on information earlier in this tip—
somehow you need to get Excel to recognize the incoming information as text so that it treats the
leading zeros as significant. The quickest way to do this is to follow these steps, prior to loading the
CsvV file:

1. Make sure the CSV file is renamed so it has a TXT extension. You must perform this step, or
the rest of the steps will not work because Excel won't start the Text Import Wizard in step
5.

2. Display the Open dialog box. (In Excel 2007, click the Office button and then click Open. In
Excel 2010, click the File tab of the ribbon and then click Open.)

3. Using the Files of Type drop-down list at the bottom of the dialog box, indicate that you
want to open Text Files (*.prn; *.txt; *.csv).

4. Select the file you renamed in step 1.

5. Click on Open. Excel starts the Text Import Wizard, displaying the Step 1 of 3 dialog box.

Tex’t Import Wizard - Step 1 of 3 ? i&l

The Text Wizard has determined that your data is Delimited.

If this is correct, choose Next, or choose the data type that best describes your data.
Original data type

Choose the file type that best describes your data:
- Characters such as commas or tabs separate each field.

*) Fixed width - Fields are aligned in columns with spaces between each field.

Startimport atrow: |1 > File origin: 437 : OEM United States EI

Preview of file C:\Users\Allen\Desktop'\Recondle.csv.

esponse Code,Authorization Code,Rddress Verification Status,Transaction| 4
,15888,N,1803057319,4/15/2008 3:435,XXXX3048,6XXXX, 127816948, Discovery Cof
., 9852 ,N,1803072364,4/15/2008 4:15,X¥XXx4113, XXXX,6 127816648, Discovery Co
,255020,N,1803073824,4/15/2008 4:18, XXXX9608,X3XX, 127816648, Discovery C
,500203,N,1803099855,4/15/2008 5:00,XXXX44592 ,XXXX, 127817971, Discovery Cf =
<« | m »

oo | () (Comm]

Page 36 of 37

6. Make sure the Delimited choice is selected, then click on Next. Excel displays the Step 2 of 3
dialog box.

7. Make sure Comma is selected as a delimiter, then click on Next. Excel displays the Step 3 of 3
dialog box. The interesting thing is that the data in your TXT file should be displayed at the
bottom of the dialog box, including any leading zeros in your fields.

8. At the bottom of the dialog box, click on the field that has leading zeros. The entire column
should now be selected.

9. Inthe Column Data Format area, make sure the Text radio button is selected.

10. Repeat steps 8 and 9 for any other fields that have leading zeros.

11. Click on Finish. Your file is imported, with leading zeros still intact.

Now you can do your work in Excel, as desired, and again save your data in CSV format. (You will,
however, need to use Save As rather than simply using Save.) The leading zeros will be included in
the data that is saved.

Why does Excel treat long numeric strings as scientific notation even after changing cell format to
text
1. Take along number like 1240800388917 and paste it in a cell in a new worksheet.
2. Excel's default cell format is general, so the string is presented in scientific notation as
1.2408E+12

This occurs at point of entry, so once it's in, any additional detail is lost, and so even if you tell Excel
that you really meant that was text, and not a number, you're kind of out of luck, and hence why
your first sequence doesn't work.

A single apostrophe ' before a number will force Excel to treat a number as text (including a default
left align). And if you have errors flagged, it will show as a number stored as text error on the cell.
In Office 2010, if you format the column first, and then paste in the data, it will show the large
numbers correctly.

This worked for me in Excel 2010. Just select the column, right click, Format cells, Custom and
choose the option that says 0 (second option below General).

Page 37 of 37

